
Thomas Jefferson National Accelerator Facility

Performance Portability Experiences
& Challenges in Lattice QCD

Bálint Joó, Jefferson Lab
discussing also the work of others: P. Boyle (U. Edinburgh), K. Clark (NVIDIA), R. Edwards

(JLab), J. Osborn (ALCF), F. Winter (JLab) and S. Khan (ODU) with help from C. Trott (Sandia)

DOE Centers of Excellence Meeting, Glendale AZ
April 19, 2016

Thomas Jefferson National Accelerator Facility

Quick Contents
• USQCD Software Layers
- Pros and Cons

• Bespoke Performance Libraries

• Extreme Metaprogramming
- QDP-JIT for CPUs and GPUs

- Grid

- QEX

• Very recent Kokkos experience

• Lessons Learned
This is a review-like talk, I didn’t do all the work. All mistakes/errors

etc. about work of others are mine.

Thomas Jefferson National Accelerator Facility

USQCD SciDAC Layered Software
• Layered

approach

• Performance
libraries - tied to
architecture

• Data parallel
frameworks for
productivity

• Wrap MPI etc.

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP++ QDP/C QIO

QMP QLAQMT

Pthreads MPI/SPI/MVIA.. System Side

Application Suites

Level 3: Domain
Performance Libs.

Level 2: Data parallel
frameworks and IO

Level 1: Comms &
Threading abstractions

Thomas Jefferson National Accelerator Facility

Pros and Cons
• “Performant Capability Portability”

- but only as long as capability is provided in Level 3
libraries for all architectures of interest

- Libraries often compete, features not always in sync

• Good reuse of libraries between applications
(e.g. QUDA)

• Has been ‘very portable’
- QCDOC, Cray XT, XE and BlueGene systems, Xeon

Clusters

• Level 2 data layouts have not been flexible, and
have typically been AOS. Difficult to vectorize
- libraries require data import/export, need to be

sufficiently granular to amortize this

- ‘native’ level 2 code, can become Amdahl’s law
bottleneck

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP++ QDP/C QIO

QMP QLAQMT

Pthreads MPI/SPI/MVIA.. System Side

Thomas Jefferson National Accelerator Facility

Domain Specific Performance Libraries
• Great way to learn about the architectures

• QUDA for GPUs:
- vital importance of data layout

- use of mixed precisions

- use of compression

- use scalable methods!

- CUDA C++ based.

• Bagel and QPhiX libraries for multicore CPUs
- AOS/SOA/AOSOA layouts

- cache-blocking approaches

- load-balancing / prefetching

- Intrinsics + OpenMP/pthreads based (QPhiX), assembler
(BAGEL)

• Very suitable for ‘simple’ solvers (CG & BiCGStab)

• Complicated solvers (e.g. multilevel AMG) painful
- need to refactor library into a framework: e.g. QUDA

12

WILSON-DSLASH PERFORMANCE
K20X, ECC on, V = 243xT

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800

G
FL

O
PS

Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

Wilson Dslash
K20X performance
V = 243xT

K. Clark - GTC 2016 (K20X)

MR(Mfine, DD) MR(Mfine, DD)

GCR(M1, DD)

MR(M1, DD?)

GCR(M2)

MR(M1, DD?)

Vcycle Preconditioner:
- multiple solvers,
- indexing multiple lattices
- different operators

- fine, fine DD?
- coarse, course DD?

- change layout per level?
- where do grids live?
- where do levels execute?

- CPU or GPU?

Thomas Jefferson National Accelerator Facility

Extreme Metaprogramming I: QDP-JIT
• QDP-JIT

- Subvert PETE expression templates in QDP++ to produce Just
In Time Code Generators

- Produce PTX (initially) or LLVM-IR (now)

- Use LLVM optimization passes

- Use LLVM back end to target hardware

• Drop in replacement for QDP++
- Deploy all of Chroma on GPUs as well as CPUs

• Divorce data layout from QDP++ data structures
- different (good) layouts on GPU & CPU

• Treat GPU memory as LRU cache
- Cache management via CUDA for GPU

- Could generalize to other Slow/Fast memory combinations.

• Downsides:
- JIT Overhead: no problem for long duration jobs

- Dependent on LLVM and PTX versions potentially

- Maintainance/extension needs LLVM expertise

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP-JIT QDP/C QIO

QMP QLAQMT

MPI System SideCUDA driver

PTX
libnvvmBG/Q QPX x86 AVX

LLVM-JIT
LLVM-IR

OS + Hardware

0 200 400 600 800 1000 1200 1400 1600 1800
XE Sockets / XK Nodes

0

2500

5000

7500

10000

12500

15000

17500

Tr
aj

ec
to

ry
 T

im
e

(s
ec

)

CPU only (XE Nodes)
QDP-JIT + QUDA (GCR)
CPU + QUDA (GCR)
QDP-JIT + QUDA (GCR) on Titan

V=403x256 sites, 2 + 1 flavors of Anisotropic Clover, m
π
 ~ 230 MeV, τ=0.2, 2:3:3 Nested Omelyan

Data from F. T. Winter et. al. IPDPS 14 F. T. Winter, Lattice’14
Tim

e: Low
er is Better

G
FL

O
PS

: H
ig

he
r i

s
 B

et
te

r

Cray XK7
BG/Q

Thomas Jefferson National Accelerator Facility

Extreme Metaprogramming II: Grid
• Recent development from University of Edinburgh (P. Boyle)

- Address performance concerns of native (non-JIT) QDP++

- Add multi-level features

- Emphasis on Data Layout

- Use virtual node idea from Connection Machine days

- Solve problem of ‘vectorization’, can work for GPU Warps too.

• Uses C++-11 features for metaprogramming
- decltype, constexpr etc.

- smaller code than PETE

- multi-resoluton ideas (generic forall)

- comms optimization (e.g. stencil concept)

• Performance is key
- “Designed to ONLY use and propagate vector intrinsics globally throughout data parallel

code: wrapped in high level operators and each defined precisely once in a single short
(400LoC) file making porting exceedingly easy”

• Not yet portable to GPUs
- Future goal: using evolutions of OpenMP offload/OpenACC

- Combining directives with metaprogramming can be tricky: R&D topic

• See: https://github.com/paboyle/Grid for code, and also Peter Boyle’s slides from
IXPUG: [Here] . Look for 06-Boyle-IXPUG.pdf

Vector Unit of Length N
log2N dimensional
virtual node grid

Lay-out lattice over
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

https://github.com/paboyle/Grid
https://drive.google.com/folderview?id=0B9kBqCR08pIoc0xzWDBJSG5IeWs&usp=sharing

Thomas Jefferson National Accelerator Facility

Extreme Metaprogramming III: QEX
• QEX Project: James Osborn, ALCF, using the Nim language

• Nim (formerly Nimrod) is a very high level language (http://nim-lang.org)
- generates C/C++, which can then be compiled

• allows easy integration with C/C++

• can produce #pragma’s in the C-code (OpenMP/OpenACC) intrinsics (SIMD)

• can interface with C-like languages (CUDA/OpenCL)

- two levels of metaprogramming

• use as flexible C/C++ code generator

• high level AST transformations on any Nim code

- strongly typed

- modules: no more arbitraty .h/.cc distinction

- reflection/introspection: automatic (de)serialization

- script-like: instead of scripting your executable, have your script be the executable

• no need to integrate scripting/input language

• Comments:
- relatively young language

- would require some infrastructure work (e.g. wrap MPI — Nim provides automatic wrapping tool)

- very promising initial exploration work

• See http://www.mcs.anl.gov/~osborn/scidac/qex.pdf for details

• QEX code available on GitHub: https://github.com/jcosborn/qex
9

QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
 let tidOld = tid
 let nidOld = nid
 proc tproc =
 {.emit:"#pragma omp parallel".}
 block:
 setupForeignThreadGc()
 tid = ompGetThreadNum()
 nid = ompGetNumThreads()
 body
 tproc()
 tid = tidOld
 nid = nidOld

From J. Osborn’s slides: Example Lattice (client) Code

8

QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
 m1 := 1
 v1 := 2
 v2 := m1 * v1
 shift(v1, dir=3, len=1, v2) # len=+1: from forward
 single:
 if myRank==0:
 echo v2[0][0] # vector “site” 0, color 0
qexFinalize()

Construct Domain Specific
Objects

Matrix x Vector
Nearest Neighbors

Emit Compiler #pragma

From J. Osborn’s slides: Metaprogramming example

http://nim-lang.org
https://github.com/jcosborn/qex

Thomas Jefferson National Accelerator Facility

Kokkos Experiments
• Kokkos is a programming model for performance portability

written in C++
- many back ends: OpenMP, CUDA, qthreads etc.

• Aesthetically very appealing abstraction of hardware
features, and implementation of parallel patterns.

• Initial experiment with a lattice QCD Kernel: yi= D xi for
i=0..15
- compare Kokkos implementation with a straight C/C++ version. (S.

Khan, ODU)

- Initial performance low (no vectorization)

- Interaction with Kokkos team (C. Trott) improved performance to
over 80% of hand written C++ code

• Big Thanks to Christian Trott from the Kokkos team for
optimizing this so promptly!!!

• More work to be done here, hopefully future collaboration
with Kokkos team.

• Kokkos is on GitHub: https://github.com/kokkos
- also, further talks at this workshop: C. Trott, S. Hammond, & others

57.8	

11.9	

48	

122	

84	

65	

90	

0	

20	

40	

60	

80	

100	

120	

140	

Hand	wri3en	C++	
(SNB,	8	cores)	

UnopBmized	
Kokkos	(SNB,	8	

cores)	

OpBmized	Kokkos	
(SNB,	8	cores)	

Hand	wri3en	C++	
(HSW,	12	cores)	

OpBmized	Kokkos	
(HSW,	12	cores)	

OpBmized	Kokkos	
(KNC-7120,	60	

cores)	

Final	Kokkos	(K40)	

GF
LO

PS
	

Dslash(16)	

NB: Optimized = what Christian optimized overnight
Final = what Christian optimized overnight + 1 day

This is not the end, but the beginning (custom layouts etc still to come)

https://github.com/kokkos

Thomas Jefferson National Accelerator Facility

Lessons Learned/Takeaways
• Bespoke High Performance Libraries are extremely valuable but also a real pain

- High performance, but tied to architecture

- Low level code, using intrinsics/assembly.

- Frequently generated by code-generators

- Complicated algorithms (more complex solvers, force terms) are difficult to implement

• turn ‘library’ into a ‘framework’ from the bottom-up

- Feature compatibility often lags between libraries

- Difficult to maintain

- Low developer productivity

• Would really like the productive Level 2 frameworks to provide features and performance to
remove the need for bespoke libraries
- performance portability through the performance portability of the framework

- but potentially decreased reuse for codes using different frameworks (framework dependence)

Thomas Jefferson National Accelerator Facility

Lessons Learned/Takeaway: II
• Data layout flexibility and mixed precision algorithms are crucial, especially for memory bandwidth bound problems

• In order to provide ‘expression’ syntax for users, and in order to deal with GPUs as well as CPUs - we had to do to some
form of metaprogramming
- PETE - for QDP++ & QDP-JIT; C++11 improvements for Grid

- Kokkos uses a lot of metaprogramming under the hood

- Mixing compile time constructs, with runtime constructs can get very messy.

• e.g. runtime selection of templated objects

• Nims offers nice features (modules, reflection, scripting etc) and can be used as a high level code-generator for C/C++.

• We’ve not made much use of directives for accelerators so far
- QUDA library used CUDA since beginning

- QDP-JIT works at the PTX/LLVM-IR level (depending on implementation)

- There may be issues using acceleration directives with recursive expression templates.

- Frameworks should hide this feature from the user.

• Essential to have clean builds, unit tests etc
- Code is complex (Expression Templates, Low level codes etc), Testing is important. We should always strive to improve software

engineering practices.

Thomas Jefferson National Accelerator Facility

Acknowledgements
• Many thanks to colleagues for rapid & constructive feedback
- P. Boyle (U. Edinburgh), K. Clark (NVIDIA), R. G. Edwards (JLab), J. Osborn (ANL, ALCF),

F. Winter (JLab)

• Many thanks to C. Trott of the Kokkos team for extremely fast optimization of our
test code

• I gratefully acknowledge funding from the US Department of Energy, Office of
Science, offices of Advanced Scientific Computing Research, Nuclear Physics
and High Energy Physics under the SciDAC program

• This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Nuclear Physics under contract DE-
AC05-06OR23177.

